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1 Minimal Recurrent Control (MRC)

On the basis of the well understood functionalities and dynamics of the MRC
(Hülse and Pasemann, 2002; Manoonpong, 2007), we here empirically adjusted
the connection weights of the network for our robot as follows. First, the weights
from the inputs (I1,2, Supplementary Figure 1(a)) to the neurons (H1,2,
Supplementary Figure 1(a)) were set to a high value as amplification fac-
tors, i.e., 7.0. Then the self-connection weights of the neurons were adjusted to
derive a reasonable hysteresis interval on the input space. In this case, the hys-
teresis effect determines the turning angle in front of the obstacles for avoiding
them, i.e., the wider the hysteresis, the larger the turning angle. Both self-
connections are set to 4.0 to obtain a suitable turning angle to avoid obstacles
or sharp corners (less than 90 degrees, see the Experiments and Results section).
It is important to note that this turning angle depends also on the application
environment of the robot as well as the robot configuration. Finally, the re-
current connections between the neurons were symmetrized and adjusted to
−3.5. Such inhibitory recurrent connections are formed as a so-called even loop
(Pasemann, 1993), which also shows hysteresis (Supplementary Figure 1).
In general conditions, only one neuron at a time is able to produce a positive
output (≈ +1), while the other one has a negative output (≈ −1), and vice versa
(Supplementary Figure 1). However, both neurons (H1,2, Supplementary
Figure 1(a)) can show high activation only if their inputs are very high, e.g.,
> 0.81 (Supplementary Figure 1(c)). This guarantees optimal function-
ality for avoiding obstacles and escaping from corner and deadlock situations
(Hülse et al., 2004). Additionally, the setup parameters enable the network to
eliminate the noise of the sensory signals. The complete network is shown in
Supplementary Figure 1(a). The hysteresis effects of the network and time
evolution of its outputs are exemplified in Supplementary Figures 1(b)–(g).
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Supplementary Figure 1: (a) The MRC where its connection weights are
empirically adjusted for controlling an obstacle avoidance behavior of the leg-
wheel hybrid robot. (b), (c), (d) Hysteresis domain of the input neuron I2 for
the output neuron H2 of the network with the input neuron I1 fixed. (e), (f),
(g) Time evolution of H1,2 for varying I2 (see text for details).

Supplementary Figure 1(b) shows that, setting I1 to ≈ −1.0 (i.e., there
is no obstacle on the left of the robot), the output neuron H1 shows low ≈
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−1 activation at all times while H2 changes according to I2 (Supplementary
Figure 1(e)). In this case, the robot will move forward F as long as H1 and
H2 give low activation but it will turn left TL as soon as I2 increases to values
above ≈ −0.2 leading to high activation of H2; i.e., there is an obstacle on its
right (Supplementary Figure 1(e)). However, it will return to move forward
when I2 decreases to values below ≈ −0.81 meaning that no obstacle is detected.

Supplementary Figure 1(c) shows that, setting I1 to 0.0 (i.e., there is an
obstacle on the left of the robot in a long distance), H1 shows low ≈ −1 and high
≈ +1 activation opposite to the activation of H2 driven by I2 (Supplementary
Figure 1(f)). In this case, the robot will generally turn right TR but it will
turn left TL (Supplementary Figure 1(f)) as soon as I2 increases to values
above ≈ 0.81. As a consequence, H2 shows high activation which then inhibits
H1 (i.e., detecting a very close obstacle on its right). And the robot will turn
right TR (Supplementary Figure 1(f)) when I2 decreases to values below
≈ −0.81 such that H2 becomes inactive (≈ −1) resulting that H1 becomes
automatically active (≈ +1).

Supplementary Figure 1(d) shows that, setting I1 to ≈ 1.0 (i.e., there is
a very close obstacle on the left of the robot), H1 shows high ≈ +1 activation
at all times while H2 changes according to I2 (Supplementary Figure 1(g)).
In this case, the robot will turn right TR as long as H2 gives low activation but
it will move backward B as soon as I2 increases to values above ≈ 0.81 leading
to high activation of H2; i.e., there is also a very close obstacle on its right
(Supplementary Figure 1(g)). However, it will return to turn right when
I2 decreases to values below ≈ 0.2 meaning that only the obstacle on its left is
still detected. In reverse cases, if I1 is varied while I2 is fixed, it will derive the
same hysteresis effect as I2 does.

2 Velocity Regulating Network (VRN)

The VRN is derived from a multiplication of two values of the range x, y ∈
[−1,1]. It was constructed by four hidden neurons which are connected with
an output neuron and was trained by using the backpropagation algorithm
(Rumelhart et al., 1980). Supplementary Figure 2(a) presents the resulting
network. It approximately works as a multiplication operator (Supplementary
Figures 2(b) and (c)).

3 Neural Oscillator Network

The neural oscillator network is realized by using two neurons with full con-
nectivity and additional biases (Supplementary Figure 3(a)). The network
parameters was manually adjusted for our task here. The resulting weights
and the outputs of the network according to these setup parameters are shown
in Supplementary Figure 3. More investigation and analysis of the network
can be found in (Manoonpong, 2007; Pasemann et al., 2003; Manoonpong et al.,
2008).

It is important to note that this 2-neuron oscillator network is used here
since: 1) it is inspired by neural structures found in insects (Büschges, 2005),
2) its output signals after post processing via the PSN can produce appropriate
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Supplementary Figure 2: (a) The VRN where its parameters are given by
A = 1.7246, B = −2.48285, C = −1.7246. (b) The approximation H10(H4, H5)
of the VRN with average mean square error (e2) ≈ 0.0046748. The output
H10 of the neuron is given by a sigmoidal transfer function tanh; therefore the
suitable input values x, y projecting to H4 and H5 are in the range of [−1,· · ·,1].
(c) The multiplication function F(x, y) = x · y.
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Supplementary Figure 3: (a) The 2-neuron oscillator network (CPG). (b)
Output signals of neurons H11 (dashed line) and H12 (solid line) from the neu-
ral oscillator network. They differ in phase by π/2 and have a frequency of
approximately 0.8 Hz. They are used to basically drive the legs (i.e., here,
Mleft,leg, Mright,leg) of the robot. (c) Phase space with quasi-periodic attractor
of the oscillator network.

rhythmic patterns (i.e., asymmetry of ascending and descending slopes, see Ex-
periments and Results section in the main manuscript) for sidestepping, and 3)
the network can be later extended to achieve a so-called adaptive neural chaos
oscillator which produces chaotic and a large variety of periodic patterns. Such
patterns can be useful for specific behaviors necessary to appropriately respond
to a changing environment like self-untrapping from a hole in the ground as
shown in (Steingrube et al., 2010).

4 Phase Switching Network (PSN)

The PSN is a hand-designed feedforward network consisting of four hierarchical
layers with 12 neurons. The development of this network is described as follows.
First, the periodic signals of the neural oscillator network are provided to the
PSN through two pairs of hidden neurons (H15,16 and H17,18, Supplementary
Figure 4(a)). The synaptic weights projecting to them are determined such
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that they should not change the periodic form of their input signals and should
keep the amplitude of the signals as high as possible. Thus, we set these synap-
tic weights to 0.5, which will convert the signals in the linear domain of the
sigmoidal transfer function tanh. The activation of H15,16,17,18 is controlled by
higher layer neurons H13,14 with large inhibitory connections (i.e., −5.0). H13

(or H14) will inhibit its target neurons (Supplementary Figure 4(a)) if it is
activated, where its activation will be controlled by the binary values of I5. As
a result, one neuron of each pair (H15 or H16 and H17 or H18) will be activated
while the other will be inhibited. For instance, if H15 and H17 are activated,
they will give periodic outputs while H16 and H18 will give a constant value of
−1.0 and vice versa. To preserve the periodic output of the activated neurons,
e.g., H15,17, we have to shift the signals of the inhibited neuron, e.g., H16,18,
from −1.0 to 0.0 before summing them. This is done by the hidden neurons
H19,20,21,22 of the lower layer.

The synaptic weights together with the bias terms connected to them are
set in a way that the signals will be again converted in the linear domain and
the output signals of the inhibited neurons will be shifted to minimally 0.0.
That is, we again choose them as 0.5. Finally, we amplify the output signals
of H19,20 and H21,22 with larger synaptic weights, i.e., 3.0, and combine them
via the output neurons H23,24. Additionally, we set the bias terms of H23,24 to
−1.35 to shift the offset of the resulting output signals down. Supplementary
Figure 4 shows the resulting network and the output signals of it with respect
to the given input I5.
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Supplementary Figure 4: (a) The PSN. (b) Output signals of the neural
oscillator network projecting to the PSN through hidden neurons H15,16,17,18.
(c) Output signals (H23,24) of the PSN controlled by the input I5 (d). From
1000 to around 1230 time steps I5 is set to 1; such that H14 is activated while
H13 is deactivated because of its bias term. Thus, H14 inhibits the activation
of its targeting neurons H16,18. As a result, H23,24 of the network generate the
periodic signals originally coming from H11,12 of the CPG through H15,19 and
H17,21. On the other hand, the periodic signals go through other neuron paths
when I5 is set to 0 after around 1230 time steps.
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